Diversity of functional genes for methanotrophs in sediments associated with gas hydrates and hydrocarbon seeps in the Gulf of Mexico.
نویسندگان
چکیده
Methanotrophs are ubiquitous in soil, fresh water and the open ocean, but have not been well characterized in deep-sea hydrocarbon seeps and gas hydrates, where methane is unusually abundant. Here we report the presence of new functional genes for the aerobic oxidation of methane by methanotrophs in marine sediments associated with gas hydrates and hydrocarbon seeps in the Gulf of Mexico. Samples were collected from two hydrate locations (GC185 and GC234): one hydrocarbon-seep location at a brine pool (GC233) and one background-marine location about 1.2 miles north of the brine pool (NBP). Community DNA was extracted from each location to establish clone libraries for the pmoA functional gene using a PCR-based cloning approach. Three hundred and ninety clones were screened by sequencing and 46 operational taxonomic units were obtained. Eight operational taxonomic units were present in every sample; one of them was predominant and accounted for 22.8-25.3% of each clone library. Principal-component analysis indicated that samples GC185 and GC234 were closely related and, along with GC233, were significantly different from NBP. These results indicate that methanotrophic communities may be similarly impacted by hydrocarbons at the gas-hydrate and seep sites, and can be distinguished from methanotrophic communities in the normal marine sediment. Furthermore, cluster analysis showed that 84.8% of operational taxonomic units from all samples formed distinct clusters, which could not be grouped with any published pmoA sequences, indicating that a considerable number of novel methanotrophic species may exist in the Gulf of Mexico.
منابع مشابه
Microbial Diversity in Sediments and Gas Hydrates Associated with Cold Seeps in the Gulf of Mexico
متن کامل
Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the gulf of Mexico.
White and orange mats are ubiquitous on surface sediments associated with gas hydrates and cold seeps in the Gulf of Mexico. The goal of this study was to determine the predominant pathways for carbon cycling within an orange mat in Green Canyon (GC) block GC 234 in the Gulf of Mexico. Our approach incorporated laser-scanning confocal microscopy, lipid biomarkers, stable carbon isotopes, and 16...
متن کاملThe microbial nitrogen cycling potential is impacted by polyaromatic hydrocarbon pollution of marine sediments
During hydrocarbon exposure, the composition and functional dynamics of marine microbial communities are altered, favoring bacteria that can utilize this rich carbon source. Initial exposure of high levels of hydrocarbons in aerobic surface sediments can enrich growth of heterotrophic microorganisms having hydrocarbon degradation capacity. As a result, there can be a localized reduction in oxyg...
متن کاملThe anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps
We determined the geochemical characteristics of sediments and measured rates of the anaerobic oxidation of methane (AOM) and sulfate reduction (SR) in samples collected near thermogenic (structure II) gas hydrate mounds and in areas lacking hydrates along the continental slope in the Gulf of Mexico. We used radiotracer (C-14 and S-35) techniques to determine rates of AOM and SR over depth in s...
متن کاملEpizooic metazoan meiobenthos associated with tubeworm and mussel aggregations from cold seeps of the northern Gulf of Mexico
The abundance and higher taxonomic composition of epizooic metazoan meiobenthic communities associated with mussel and tubeworm aggregations of hydrocarbon seeps at Green Canyon, Atwater Valley, and Alaminos Canyon in depths between 1400 and 2800 m were studied and compared to the infaunal community of non-seep sediments nearby. Epizooic meiofaunal abundances of associated meiobenthos living in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology ecology
دوره 57 2 شماره
صفحات -
تاریخ انتشار 2006